

Testing with CANoe

Version 1.1
2009-10-08

Application Note AN-IND-1-002

Author(s) Stefan Krauß
Restrictions Public Document
Abstract This application note describes the basic concepts of CANoe's Test Feature Set in detail.

Table of Contents

 1
Copyright © 2009 - Vector Informatik GmbH
Contact Information: www.vector.com or ++49-711-80 670-0

1.0 Overview ..2
2.0 Testing with CANoe ...2
2.1 CANoe Test Concept ..2
2.1.1 Architecture...2
2.1.2 Test Module, Test Group, Test Case, Test Step ..3
2.1.3 Test Results – Verdicts...5
2.2 Reporting of Test Results..6
2.2.1 Overview ...6
2.2.2 Manually and automatically generated report information..7
2.2.3 Use of identifiers ...7
2.2.4 Test steps ...7
2.2.5 Documentation of CAPL programs by test steps..8
2.3 Formulating test cases in CAPL..9
2.3.1 Principle ..9
2.3.2 Setting up a CAPL test module...9
2.3.3 Wait commands ..10
2.3.4 Wait commands with complex conditions...12
2.3.5 Event procedures in test modules ..12
2.3.6 User-defined events..13
2.3.7 Differences between CAPL for simulation/analysis and for testing ..13
2.4 Defining test cases in XML test modules ..14
2.4.1 Principle ..14
2.4.2 Setting up XML test modules..15
2.4.3 Working with test functions ...16
2.5 Programming test cases in .NET test modules...16
2.5.1 Principle ..17
2.5.2 Setting up purely .NET test modules ..17
2.5.3 Wait points ..18
2.5.4 Type Library ..18
2.5.5 Event procedures in test modules ..18
2.5.6 Observation of system conditions...18
2.6 XML test modules versus CAPL/.NET test modules...19
2.7 Constraints and conditions..20
2.7.1 Principle ..20
2.7.2 Use of predefined checks in CAPL and .NET...22
2.7.3 Constraints and conditions in XML ...23
2.7.4 User-defined test conditions ...23
2.7.5 Influencing the test flow ..24

 Testing with CANoe

 2
Application Note AN-IND-1-002

2.8 Test Service Library ..24
2.8.1 Checks ..24
2.8.2 Stimulus Generators ...25
2.9 Test setup..25
3.0 Test strategies ...26
3.1 Protocol tests...26
3.1.1 Test concept ...26
3.1.2 Implementation in CANoe...27
3.2 Application Tests ...27
3.2.1 Test concept ...27
3.2.2 Implementation in CANoe...28
3.3 Invariants test ..29
3.3.1 Test concept ...29
3.3.2 Implementation in CANoe...30
4.0 Interface to a Test Management System...31
4.1 Fundamentals of test management...31
4.2 Principle of the interface..31
5.0 Contacts...32

1.0 Overview
Although CANoe was designed as a tool for analyzing and simulating bus systems, from its inception it was also
used to test ECUs and networked systems. Effective with Version 5.0, CANoe1 was expanded to include test
support capabilities, and the so-called Test Feature Set was integrated. The Test Feature Set is not a self-
contained component of CANoe; it encompasses a whole series of extensions that simplify the process of setting
up tests and expand CANoe to include important capabilities such as test reporting.

Discussed in this White Paper are the testing concepts and potential applications of CANoe and the Test Feature
Set. In particular, its objective is to show how tests are set up with CANoe and how test sequences are formulated.

2.0 Testing with CANoe
In this chapter the important concepts and components of the Test Feature Set are presented, and the use of
CANoe as a platform for executing tests is explained.

2.1 CANoe Test Concept

2.1.1 Architecture
Besides its well-known analysis and simulation components, another component was introduced in CANoe for
testing. Test modules can be started by the system or the user during measurement, and they each execute a test
sequence. The test sequence may be formulated as a CAPL/.NET program or an XML file (these are also called

1 The program package CANoe/DENoe supports different bus systems such as CAN, LIN, MOST and FlexRay. Therefore, the

program is available under slightly different names, depending on the specific bus systems supported (e.g. CANoe.MOST
supports CAN and MOST). In this White Paper “CANoe” represents all such bus system variants, i.e. the configurations apply
to all variants.

 Testing with CANoe

 3
Application Note AN-IND-1-002

CAPL test modules, .NET test modules and XML test modules). Since such a file describes exactly one test
module, the description files themselves are often referred to as test modules.

Test modules access the remaining bus simulation, the buses (e.g. CAN, LIN, FlexRay, MOST), and access the
digital and analog input and output lines of the Device Under Test using general purpose I/O cards or VT System
via system variables . An ECU may be tested by itself, or as part of a network consisting of various ECUs where
the object of testing is called a System Under Test or SUT. CANoe’s options are available to the test modules, e.g.
panels for user interaction or writing of outputs to the Write Window.

Figure 1: Setup of a test system with CANoe.

Besides using CANoe to execute the tests, other CANoe functions can also be used. For example, part of the total
system might be simulated in CANoe using simulation nodes (remaining bus simulation) or bus communication and
the behavior of the SUT might be analyzed (observation in the Trace Window, analysis by CAPL program, logging
of statistics, etc.).

A test report is created as a result of the execution of a test module. The test report in XML format is written during
test execution. After the test module has been executed the XML test report is converted to HTML format (see
section 2.2).

2.1.2 Test Module, Test Group, Test Case, Test Step
In CANoe the test module is the execution unit for tests. A test module is always started for test execution, and the
results of this execution are represented by exactly one test report. The test module contains the test cases. The
test case is the central concept, in which the actual testing actions are collected. These in turn are organized by
test steps. A test step is simply a piece of information indicating that the test sequence has reached a specific
point.

 Testing with CANoe

 4
Application Note AN-IND-1-002

Test Module Test Case

Test Step

Test Step

Test Step

Test Case

Test Case

Figure 2: Test modules contain test cases that are organized by test steps.

The test case contains the actual instructions for test execution. If at all possible, test cases should be set up so
that they work independently of all other test cases. Test cases are executed as part of a test module that includes
other test cases as well, but they are developed and maintained independently of one another (see chapter 3.0 on
Test Management Systems). The testing actions that serve to test a property or capability of the ECU under test
are formulated in a test case.

For example, the entire network management of an ECU consists of a large number of properties and functions.
Each of these properties and functions should be checked in a separate test case. E.g. the tester would formulate
a separate test case for regular startup of the system, for handling a specific fault situation and so on.

one would not test the entire Network Management of an ECU in a test case, since it consists of a large number of
properties and functions. Instead one would handle each of these properties in a separate test case, e.g. by
formulating a separate test case for regular startup of the system or for handling a specific fault situation.

Test Module

Test Case
Test Case
Test Case

1 Test Group

Test Case
Test Case

1.1 Test Group

Test Case
1.2 Test Group

Test Case
Test Case

2 Test Group

Figure 3: Test cases can be organized hierarchically by test groups.

In the test report the executed test cases are listed with their results. These executed test cases may be structured
in the test report according to test groups. Test groups are mainly an organizational category for the executed test

 Testing with CANoe

 5
Application Note AN-IND-1-002

cases. Like the titles of chapters in a book, the test groups may be created hierarchically, whereby the executed
test cases would be the leaves on the tree of test groups.

Test groups are dynamically defined in CAPL and .NET test modules. A test case is assigned to a test group by
the CAPL/.NET program at run time. In CAPL/.NET test modules, test cases may be executed a number of times
during a test run. A test case might therefore be documented multiple times in a test report and in various test
groups.

In XML test modules the structure of the test cases, i.e. their sequence and test group associations, is defined
statically. A test case will only appear once here in the report, and it will always have the same test group
assignment.

2.1.3 Test Results – Verdicts
Test results are automatically acquired and processed in CANoe. The Test Feature Set follows a very simple
concept: Tests may be passed (pass) or failed (fail). This simple, two-value test result is called a verdict. The
verdict is passed if the test could be executed and prove that the functionality that has to be checked by the test
case or test module works. In all other cases the verdict is failed. Please note that a test case for example also fails
if it could not be executed correctly because of external events (e.g. the presumptions are not valid). Therefore the
statement of the verdict is “SUT is proven to be ok” or “it was not possible to check that the SUT is ok”. Especially
failing does not mean “SUT is proven to be not ok”. Nevertheless, additional hints in the report may give the tester
an idea why a test case has failed.

Test execution is evaluated on two levels, the level of test cases and the level of the entire test module. In CANoe,
test results are not formed on the level of test groups since assignments of test cases to test groups are not static,
at least in CAPL test modules, and consequently they are not uniformly determinant over multiple test runs. This
means that it is not possible to draw any conclusions of the type “Test group XY passed/failed”.

In principle, a test case is considered passed if there were no errors during its execution. Therefore, error-free
execution does not need to be reported explicitly in the test flow. An error might be reported by different sources,
especially these:

• An error is indicated in the CAPL program by TestStepFail or TestCaseFail,
• A failure of test functions (see section 2.4.3) is automatically reported,
• A failure of a condition or constraint (see section 2.5) is automatically reported,
• A problem in the execution of test commands is evaluated as an error (e.g. input of illegal parameter

values).

Generally a CAPL/.NET test case is continued after an error occurs. Subsequent tests might run just fine with no
reported errors and an explicit “pass” in the test report. However this does not mean that the verdict of the test
case is reset to “pass”. Clear rule: Once an error has occurred the test case has always failed. In XML no control
structures (like conditions) are available. Thus, it is impossible for the user to react on failures. Instead of this the
XML test cases are canceled after an error occurs and the test module is continued with the next test case.

The verdict of the test module is reached by the same rules as those used to arrive at verdicts for the executed test
cases. As soon as a test case has failed, the entire test module is also considered failed. The verdict is
automatically determined by CANoe during execution of the test module.

Essentially a verdict is a conclusion regarding an executed test module or an executed test case. So there is no
verdict of the type “not executed” or similar. Nevertheless, unexecuted test cases may be documented in the test
report. They have no verdict, and the information that is passed simply indicates that these test cases were
specified in the test description but were not executed.

The current verdict may be queried, e.g. to automatically terminate execution of a very long test sequence at
specific points if an error has already occurred up to that point. On the module level the verdict may also be set
explicitly. This option makes it possible to implement your own verdict logic in exceptional situations.

Test steps, test functions, test patterns and others may also have a verdict like result. These results are not
verdicts in the closer sense. They typically contain more information than just pass/fail. For example, test steps

 Testing with CANoe

 6
Application Note AN-IND-1-002

may also have a result “not available” if the test case is just information about the ongoing test execution and
reports no checking result.

2.2 Reporting of Test Results
A test report documents one execution of the test module and the results of this test run. The test report is written
during execution.

2.2.1 Overview
CANoe starts writing the test report to the hard drive in XML format during test execution, and it supplements it
continuously. This assures that even very long test runs can be documented without having internal buffers
overrun or requiring excessive amounts of memory (RAM). Immediately after the end of the test run this XML file is
converted into HTML with the help of a XSLT stylesheet.

The XSLT stylesheet determines the form and contents of the HTML test report. Using the stylesheet, it is easy to
display a report on a simple HTML page, but complex HTML documents consisting of many files may also be
generated. Furthermore, the stylesheet can be used to filter out information, since in the conversion not all
information needs to be copied from the XML report to the HTML report. It is easy to modify the supplied
stylesheets for one’s own needs or to use a custom stylesheet.

The conversion of the XML report to HTML is performed by a XSLT processor that is controlled directly by CANoe.
However, the user may also call the XSLT processor from a DOS prompt without CANoe (see online help of
CANoe).

It is therefore possible to convert an existing XML report to a HTML report at a later time. Various XSLT
stylesheets may be used to generate different representations of the same report. For example, the user could
create a simple test summary for filing purposes as well as a very detailed report for error analysis. Similarly,
different representations that depend on the specific output medium are feasible, e.g. an easy-to-print report and a
version equipped with lots of navigation controls for interactive viewing with a Web browser. Using XSLT
stylesheets it is even possible to generate reports in other output formats such as RTF or text files.

CANoe
test

module

XML

test
report

XSLT

style
sheet

HTML

test
report

XSLT
processor

writing XML report controlling XSLT processor

Figure 4: Creating a report using CANoe.

The XML test report is the primary report output of CANoe that contains all of the recorded results. The amount of
reported results can be influenced by the report filters in the configuration dialog of a test module. Filtered
information will not be generated at all. The reason for using this filter is to get smaller XML files and to disburden

 Testing with CANoe

 7
Application Note AN-IND-1-002

CANoe from handling unneeded reporting events. HTML reports are simply views that can be generated from the
XML report at any time.

Besides reporting, CANoe also supports other modes of recording information, especially the so-called Logging
Feature. Test reporting does not replace logging; the two output types complement one another. While logging
records bus communications and interaction with the environment (e.g. I/O via system variables) the test report
gives information on which test cases were executed when and what their results were.

2.2.2 Manually and automatically generated report information
Essentially the test report is automatically generated by CANoe2. This means that it is not necessary to add
supplemental commands or information to the description of test sequences. CANoe might use test case names as
they appear in the CAPL, .NET or XML definition, for example.

The existing information is sufficient to generate a simple test report that lists the executed test cases with their
results and the specific start and end times. On the other hand, CANoe can supplement the report to include
expanded descriptions of the test setup, device under test, test engineer and individual test cases. This information
is added to the test description by suitable CAPL/.NET commands (e.g. TestCaseComment) or XML elements
(e.g. <description> in <testmodule> or <testcase>).

2.2.3 Use of identifiers
In many test specifications the test groups, test cases and individual test steps are assigned a unique identifier in
addition to their name. Often the test cases are just numbered sequentially, but sometimes a more complex system
of identification is used (e.g. “NWM01” through “NWM15” might identify test cases for network management
functionality).

Test groups, test cases and test steps may be assigned identifiers in CAPL, .NET or XML test modules. This is the
purpose of the parameter respective field “ident”. The identifier will be copied to the report. They might be used to
uniquely identify the test groups, test cases or test steps in the test module and thereby establish a reference
between the test module and the test report.

If identifiers are not needed, these entries may be omitted (enter an empty string). Identifiers should not be used to
store longer names, since the test report formatting is not laid out for this purpose. Separate fields are available for
names and descriptions.

External references are another possibility to link test cases to test specifications or other external sources. Test
cases written in CAPL, .NET or XML can contain reporting commands/elements with references that are copied to
the report. The DOORS integration in the Test Automation Editor TAE for example works in this way. The
reference to the representation of the test case in DOORS is stored in the test case of the XML test module. During
execution this reference is copied to the report. At the end, the user can directly navigate from the test case in the
report to the test case in DOORS.

2.2.4 Test steps
The test steps are the most important means of reporting on the test sequence in detail. Test steps are statements
about the status of test execution at a specific point in time3. They contain:

• The level of detail,
• an identifier,
• a description, and

2 Just like the conversion to HTML in CANoe, the creation of the XML test report may also be configured separately for each

test module.
3 Test cases are not subdivided into test steps, rather the execution of test cases is reported by test steps at specific points in

the sequence. In spite of this, test steps may be utilizes so that they describe the test cases section by section.

 Testing with CANoe

 8
Application Note AN-IND-1-002

• a result.

Entry of the level of detail is optional and serves to differentiate between fundamental test steps and those that just
provide details in the test report. This makes it possible to vary the level of detail in generating the HTML report.
The level of detail is input as a number; if no number is input, 0 is assumed (0 represents important test steps;
larger values describe increasing detail in test steps).

Identification of test steps as described above (see 2.2.3) is used to reference individual descriptions of test steps
in the user’s existing test documentation, e.g. reference to a test step number in a test specification.

Test steps are assigned a result resulting from the specific test step command used, and this is output in the
report. The actions documented by the test step are what is being evaluated:

• pass: The reported actions were executed as expected. For example, a specific message was received as
expected in the test sequence. The test sequence is thereby reported accurately, since error analysis often
requires precise knowledge of the previous passed test steps.

• fail: The reported action indicates an error in the test flow. For example, an expected message may not
have been received within a specified time period (timeout).

• warning: The reported action was executed as expected, but the result indicates a potential problem.
• none: The test step only indicates that a specific action was executed (e.g. that a message was sent out),

but a verdict in the strict sense of the term is not possible (documentation of a fact).

Essentially test steps only serve to transfer information on the test sequence to the report. They do not influence
the test execution itself except of the failed test steps. Output of a test step with the “fail” verdict only makes sense
if the test case also fails at the same time. Therefore the CAPL command TestStepFail for example
automatically causes the test case to fail as well. If the user works with test steps in this way, the CAPL command
TestCaseFail is not really necessary.

In CAPL/.NET test modules the user can only define test steps. In XML test modules, tests are defined by the more
abstract test functions which output the test steps without user intervention.

2.2.5 Documentation of CAPL programs by test steps
In CAPL test steps may be used to organize the program and substitute for program comments. Test step
commands can be used in a “two-part” form for this purpose: An initial test step command initiates the test step
and essentially serves as a title for the program lines that follow it. Then the concluding test step command is
called at a prescribed time within this first test step. The second command sets the time stamp for the test step and
causes it to be copied to the test report.

Consider the following program section that was formulated with a comment and only one test step:

// Test step 27: waiting for answer
if (1 != TestWaitForMessage (Answer, 500))
 TestStepFail (“27”, “Waiting for answer - answer not received”);
else
 TestStepPass (“27”, “Waiting for answer – answer received”);

This program section could be replaced by the following program section:

TestStepBegin (“27”, “Waiting for answer”);
if (1 != TestWaitForMessage (Answer, 500))
 TestStepFail (“ - answer not received”);
else
 TestStepPass (“ – answer received”);

Depending on the outcome of the wait operation, the output for the test step of the example might be a “fail” verdict
with the comment “Waiting for answer – answer not received”, or it might be a “pass” verdict with the comment
“Waiting for answer – answer received”.

 Testing with CANoe

 9
Application Note AN-IND-1-002

2.3 Formulating test cases in CAPL
Test modules can be defined in various ways in CANoe. A very flexible option for programming test modules is the
use of CAPL.

2.3.1 Principle
The CAPL program supplied in CANoe is an easy-to-learn programming language that is well-suited to the problem
area of “control module communications”. This programming language was expanded in the framework of the Test
Feature Set so that it not only could master simulation and analysis tasks efficiently, but could also formulate tests
in a clear and concise manner. As already mentioned above, CAPL programs that implement tests are executed as
test modules in CANoe. Therefore these CAPL programs are also referred to as CAPL test modules.

Figure 5: Event-oriented and sequential execution.

For the most part, tests consist of a sequentially executed flow of test actions that has defined start and end points.
Therefore CAPL test modules do not follow a strict event-oriented execution model, rather they follow a sequential
execution path that may also contain wait points.

A test module is started explicitly during the measurement. When the test module is started the CAPL function
MainTest is called. This function and the test cases it calls are executed sequentially. As soon as the MainTest
function ends the test module is also automatically terminated. That is, the run time of the MainTest function
determines the run time of the test module.

A test module can be restarted after it has been stopped, even during the same measurement. This means that a
test module may be used multiple times during a measurement, but only one instance of the same test module
may be executed at any given time. Different test modules may be operated simultaneously in CANoe, since test
modules, like simulation nodes, represent independent execution blocks. However, this is only practical if the test
sequences are fully independent of one another.

2.3.2 Setting up a CAPL test module
A CAPL test module consists primarily of the MainTest function and the implementation of test cases. Test cases
are defined in special functions:

 Testing with CANoe

 10
Application Note AN-IND-1-002

• That are identified by the key word testcase,
• That have no return value,
• That can have parameters like other functions,
• Whose call is automatically recorded in the test report (see 2.2.2), and
• For which CANoe automatically computes a test result, i.e. a verdict (see 2.1.3).

The MainTest function is really the “main program” of a test module. The task of this function is to call the
necessary test cases in the desired sequence. MainTest provides control of the test sequence. In its simplest
form MainTest could just consist of calls of test cases.

void MainTest ()
{
 Testcase_1 ();
 Testcase_2 ();
 Testcase_3 ();
}

Even if it is technically feasible to implement any desired test sequences using output and wait commands in
MainTest, MainTest should only contain test flow control and not enter into interaction with the system itself.
This should be reserved for the individual test cases. The flexibility of MainTest can be exploited to implement
complex flow logic, however. For example, when errors occur certain test cases could be ruled out as sources if
they build upon a functionality that has already been detected as faulty. A test case might be executed multiple
times by calling it in a loop, e.g. with a different set of parameters each time.

The wide range of programming options in MainTest, and the capability of using global variables in test case
implementations too, both carry the risk that test cases might be interdependent from a technology perspective on
implementation. Such dependencies make troubleshooting difficult in the test cases and prevent the reuse of test
cases. Therefore, in general efforts should be made not to have test cases build upon one another and to undo
changes made to the ECU under test at the end of the test case.

Event procedures can also be defined and used in test modules (only during run time of the test module, see also
2.3.5), but the system event procedures Start and MeasurementStop are not available in the test modules,
since test modules are not active from the start to the end of the measurement. Nevertheless, Prestart and
Prestop can be used to initialize and finalize resources.

A CAPL file with test cases in CAPL may also be assigned to XML test modules as a test case library. In this case
the XML test module “calls” the test cases in the library. The control flow of the test module is defined in XML (see
0) but several test cases are implemented in CAPL. The XML test module only contains the calls with the concrete
parameters.

2.3.3 Wait commands
Sequential execution of a CAPL test program can be interrupted by wait commands. The special aspect of these
commands is that they return flow control back to CANoe and do not resume processing until a specific event
occurs. From a technical perspective, when a waiting CAPL function is called flow control does not return to the
caller until a specified event has occurred.

If CANoe events are registered – e.g. reaching a dedicated signal value range, change to an environment variable
or expiration of a prescribed time span – then these events get a time stamp according to the CANoe clock and are
queued in a wait buffer for handling. First, all those events that occurred at a specific time point are handled then
the internal clock advances.

The execution of an event procedure in a CAPL program is not interruptible. An event procedure is always
executed completely, and only afterwards is the next event taken from the wait queue and handled. This means
that all operations within a CAPL program are executed at the same time, as measured by the CANoe clock.

 Testing with CANoe

 11
Application Note AN-IND-1-002

measurement start

test module start

test module end

measurement end

event

event

MainTest ()

testcase TC1 ()

testcase TC2 ()

wait command

continue
execution

test case
call

test case end

Figure 6: Execution principle for a test module with wait commands.

This execution model for CAPL programs is breached by the wait commands. Initially the start of a test module is a
CANoe event like any other. It starts processing of the test module. At first this processing cannot be interrupted; it
runs at its own timing until it encounters a wait command. The wait command now interrupts the CAPL program
and makes sure that all other events in the queue are processed first, and the clock is advanced if applicable. The
CAPL test module does not resume execution until an event occurs that was the object of the waiting. The other
CAPL program is then executed again without interruption up to the next wait command.

A wait condition is triggered when the event specified in the wait command occurs, e.g. a specific message is
received. A maximum wait time (Timeout) must always be given in the wait commands, so that the wait condition is
removed when the maximum wait time has elapsed.

The reason the wait condition was cleared is indicated in the return value of the wait condition. Generally it is not
necessary to consider all return values individually. It is sufficient to differentiate between the expected return value
and all others. The latter is evaluated as an error. The expected return value does not necessarily need to be the
return value indicating that the event given in the wait instruction has occurred. It may actually be the case that
expiration of the maximum wait time is expected in the test case, for example (statement: “The specified event did
not occur within this time period”).

If at all possible, the various wait commands return the same values for similar events. Negative return values
identify events that are generally evaluated as errors in the test sequence. However, in an actual specific case
such an event might also be expected in the test sequence, and it does not necessarily lead to a test error. This
distinction only reflects the assessments made in most cases; otherwise it has no influence on test execution.

if (1 == TestWaitForSomething (…))
{
 … // expected event received, go ahead with normal test course
}
else
{
 … // expected event not received, handle this error
}

 Testing with CANoe

 12
Application Note AN-IND-1-002

The reason for clearing a wait condition is automatically recorded in the test report. However, the test case only
fails automatically if real errors occur such as entry of invalid parameters. In all other cases the CAPL program
itself must evaluate and decide whether to clear the wait command.

The CAPL program would be structured even more clearly if there were only an explicit reaction to the unexpected
termination of the wait command. In this case it is possible to avoid nested if-conditions in the CAPL program for
the most part.

if (1 != TestWaitForSomething (…))
{
 // Some thing went wrong – handle this error
}
… // all correct, go ahead with the normal test course

The main program flow now reflects the expected course of testing; the if-branches after the wait commands
handle errors. In the simplest scenario, the test case is terminated as soon as an error occurs (but not the test
module). Error handling would be to report the failure with TestStepFail and exit the test case with return.

Example:

if (1 != TestWaitForMessage (msg, 1000))
{
 TestStepFail (“”, “Message msg not received within 1000ms.”);
 return;
}
TestStepPass (“”, “Message msg received.”);
… // go ahead with normal test course

In this example, commenting is also output to the test report if the test is successful (see also 2.2.4). This is not
absolutely necessary, but it makes it easier to follow the test flow in the test report.

2.3.4 Wait commands with complex conditions
Besides simple wait commands that wait for exactly one event, it is possible to set up wait commands with
combined wait conditions. This involves defining the individual conditions (TestJoin... CAPL commands)
before the actual wait command. These definitions do not start the wait process, nor do they monitor the
conditions. That is done by TestWaitForAnyJoinedEvent (waiting for one of the defined events with OR logic)
or TestWaitForAllJoinedEvents (waiting for all events with AND logic).

TestJoinMessageEvent (msg1);
TestJoinMessageEvent (msg2);
TestJoinEnvVarEvent (envvar);
if (0 < TestWaitForAnyJoinedEvent (2000))
…

The TestJoin commands return a value greater than zero as the unique identifier for the wait condition. With
TestWaitForAnyJoinedEvent the return value indicates which event occurred.

After the wait operation all wait conditions are cleared internally. This means that the user would need to input all of
the wait conditions again if a combined wait condition is needed more than once.

2.3.5 Event procedures in test modules
A test module may also contain event procedures outside of the test sequence that consists of the MainTest
function and the test cases it calls. Event procedures are executed quasi in parallel to the actual test sequence.
However, since as described above execution is not interruptible between two wait commands, and on a logic level
it occurs within a single time step, an event procedure can only be executed if the “main program” of the test
module is waiting. An event procedure is not interruptible, and it cannot contain any wait commands itself.
Therefore synchronization tools such as semaphore may be omitted.

 Testing with CANoe

 13
Application Note AN-IND-1-002

When using event procedures in test modules it should be noted that the test module is inactive before the start of
MainTest and after its end, and therefore no event procedures may be executed during those times either.
Furthermore, all CAPL variables are reset at each start of a test module. In this way each test run has the same
initial conditions.

2.3.6 User-defined events
Not all conceivable wait conditions can be implemented with the existing wait commands. Therefore provisions are
also made for triggering user-defined events and waiting for them. User-defined events are referred too as “text
events”, because they are identified by a unique character string selected by the user.

The event procedures existing in test modules are also used to implement user-defined wait conditions. In these
procedures a check is made to determine whether the incoming events satisfy the wait condition. If this is the case,
a user-defined event is initiated that can be waited for in a test case. CAPL programming in the event procedures
permits implementation of any desired wait conditions.

A simple example:

on sysvar sysvar::VTS::Speed::PWMFreq
{
 if (@sysvar::VTS::Speed::PWMFreq > 100)
 TestSupplyTextEvent (“Speed100”);
}

testcase TC ()
{
 …
 TestWaitForTextEvent (“Speed100”, 2000);
 …
}

User-defined events only act within a test module. Therefore, it is not possible to initiate a user-defined event in
one test module or simulation node and react to it in another test module.

Besides user-defined events (“text events”) there are also the very similar “auxiliary events”. These events are
generated by the Checks of the Test Service Library when errors occur (compare 2.8) or by other extension
libraries (DLLs). It is possible to wait for these events.

2.3.7 Differences between CAPL for simulation/analysis and for testing
The following table summarizes the differences between CAPL in simulation/analysis and for testing:

 Simulation and Analysis Testing
Execution period Active over entire measurement Only active from start of the test module until

end of the function MainTest
Execution model Event-driven

Event procedures are conceptually designed
to be atomic; waiting is not possible

Sequential execution
Additionally: Execution of event procedures is
possible
Conceptually atomic execution between two
wait commands and of event procedures

Available CAPL
commands

CAPL test commands cannot be used Supplemental CAPL test commands are also
available

Reporting – Automatic
Essentially CAPL for testing is an extension of the more familiar CAPL implementation, so nearly all existing CAPL
capabilities may also be used in CAPL test programs. Nonetheless, because of the changed execution model there
are a few principle differences between CAPL programs for simulation or analysis and CAPL for test modules.

 Testing with CANoe

 14
Application Note AN-IND-1-002

2.4 Defining test cases in XML test modules
Besides being defined in CAPL or .NET programming, test modules can also be defined in a more abstract way in
XML. Furthermore, CAPL test cases, .NET test cases and test cases defined in XML can be mixed within one test
module. Thus, test cases should be written in the language that fits best to the requirements of each test case.

2.4.1 Principle
Test modules in XML take a different approach to describing test cases than CAPL test modules, but both
approaches are based on the same underlying concepts, structures and properties of the Test Feature Set. The
most important difference, besides the file format, is the way in which test cases are described.

In XML test modules test cases are described by a sequence of test functions and control functions. Test functions
consist of test primitives and the test patterns. A test pattern implements a typical test sequence including a check
of whether the test was passed. The test pattern is generic in the sense that specific key information must be
provided. For example, one of the available test patterns implements a check of a state change. How this query is
executed, however, is fixed in the pattern. The signals and signal values that describe the start and end states
must be communicated to the test pattern by means of parameters.

A test pattern contains:

• The actual test sequence,
• The check of the condition by which the verdict is set,
• Generation of report outputs, and
• Parameters for configuration of the test patterns.

All that needs to be done in the XML file is to name the test patterns to be executed and configure them with
parameters. Therefore, test cases are defined in XML, while in CAPL and .NET test cases are programmed.

An example of a simple test module with a test case that is implemented by exactly one test pattern:

<testmodule title=”Mirror Control Test” version=”1.2”>
 <testcase ident=”TC 2.4.1” title=”Mirror Close Right” >
 <statechange title=”Close Mirror, check motor” wait=”1000”>
 <in>
 <cansignal name=”Mirror_2”>1</cansignal>
 </in>
 <expected>
 <cansignal name=”MirrorMotor2”><gt>5</gt></cansignal>
 </expected>
 </statechange>
 </testcase>
</testmodule>

The available test patterns are components of a library in CANoe. This is where the statechange test pattern is
used, which executes the following steps:

1. The signals or environment variables given in the section <in> are set to specific values. In the example
the “Mirror_2” signal is set to the value 1.

2. Waiting occurs for the prescribed time. This wait time is necessary so that the system is able to transfer
the signals. The state changes can be made in the ECU, and the changed signals can be sent back to the
tester. In the example waiting is set to 1000ms.

3. The conditions for signal values and environment variables are checked in the <expected> section. In the
example the value of the “MirrorMotor2” signal must be greater than 5.

The set of input signals is often referred to as the input vector, and the set of prescribed output signals is known as
the output or target vector. The input vector establishes the values that are set to stimulate the system. The output
vector, on the other hand, defines a condition against which the actually occurring values are checked. If one of
these conditions is violated the verdict of the test case is set to “fail”.

 Testing with CANoe

 15
Application Note AN-IND-1-002

Test primitives and control functions can also be used like the test patterns in the sequence of a test case. Test
primitives do also fulfill test functionalities like the test patterns. But they are simpler and do a more basic job than
the more elaborated test patterns. Initializing a couple of signals with the initialize primitive is an example.

Control functions are used to influence the test run (e.g. wait for a defined time span) or to document the test
sequence in the report.

It is possible to use multiple test and control functions (test patterns, test primitives) in a test case. The test and
control functions are executed sequentially in the specified order. In the above example, an additional test primitive
initialize may be used so that the actual test takes place in an assured initial state.

In XML test modules too, test cases should not be built upon one another, and the ECU under test should be reset
to its initial state after each test. However, it is not so easy to avoid all dependencies between test cases in XML
test modules.

2.4.2 Setting up XML test modules
XML test modules contain a collection of test cases. Just as in CAPL test modules they are organized in test
groups, and their execution is documented in test steps. But the test steps do not need to be defined themselves,
rather they are automatically output when the test and control functions are executed.

In XML test modules there is no flow control comparable to MainTest. It is the XML file that defines the hierarchy
of test groups and test cases and their sequential order. Once the test module is started, CANoe automatically
executes all test cases, one after another, in this order.

The CANoe user interface offers the option of selecting a subset of test cases for execution. Here too, the
sequence of execution is determined by the XML file, but the unselected test cases are skipped over. In the test
report these unselected test cases are noted as not executed (“skipped”).

Example of a complete test module (including XML header):

<?xml version="1.0" encoding="UTF-8"?>
<testmodule title=" Window Lift System Test" version="2.1"
 xmlns=http://www.vector-informatik.de/CANoe/TestModule/1.15
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://www.vector-informatik.de/CANoe/TestModule/1.15
 testmodule_1.15.xsd">
 <description>Test the states of the window lift system</description>
 <sut>
 <info>
 <name>Name</name>
 <description>Central Locking System</description>
 </info>
 <info>
 <name>Version</name>
 <description>0.9 a3</description>
 </info>
 </sut>
 <engineer>
 <info>
 <name>Test Engineer Name</name>
 <description>Stefan Krauss</description>
 </info>
 </engineer>
 <testgroup title="Function Tests">
 <testcase ident="TC201" title="Open The Window">
 <description>Initiate window open procedure over CAN bus.</description>
 <initialize wait="2000" title="Initialize signals, ensure window closed">

http://www.vector-informatik.de/CANoe/TestModule/1.15
http://www.w3.org/2001/XMLSchema-instance

 Testing with CANoe

 16
Application Note AN-IND-1-002

 <cansignal name="LockRequest">0</cansignal>
 <cansignal name="EngineRunning">0</cansignal>
 <cansignal name="Ignition15">2</cansignal>
 <cansignal name="KeyUp">1</cansignal>
 </initialize>

 <initialize wait="100" title="Reset window up key">
 <cansignal name="KeyUp">0</cansignal>
 </initialize>
 <statechange wait="3000" title="Open window">
 <in>
 <cansignal name="KeyDown">1</cansignal>
 </in>
 <expected>
 <envvar name="WindowMotion"><ge>2</ge></envvar>
 </expected>
 </statechange>
 </testcase>
 </testgroup>
</testmodule>

Besides the statechange test pattern described above, the initialize test primitive is used here, too. It
serves to initialize signals and environment variables, and it works similar to the statechange pattern, but without
the condition section.

If a test case fails, the test cases that follow the failed test case are still executed, even though this always lead to
failure of the entire test module. Within a test case CANoe behaves differently: As soon as a test function fails, the
test case (not the test module!) is terminated. That is, the test or control functions that follow a failed test function
are no longer executed. This behavior serves to accelerate the test flow.

2.4.3 Working with test functions
Many test patterns and primitives operate with signals. For stimulation of the system, messages are not generated
directly on the bus, rather the input signals of an embedded Interaction Layer are changed in the remainingbus
simulation. Exactly when this layer passes the modified signals to the communication bus depends on the selected
Interaction Layer and is not directly influenced by the test function. In principle, the mechanism used by the test
functions does not differ from work on the signal level in CAPL programs.

In defining signal values it should be noted that test functions always work with physical values. This means that
the transferred signal values are converted to physical values with the help of the database (CANdb). Raw values
of signals cannot be accessed directly from the test functions and checks (see 2.7.2).

The values of the results represent physical variables, therefore ranges should always be used instead of simple
comparisons. This method will cover any inaccuracies that might result from the conversion of raw values. Strictly
speaking, this is not a special issue with test functions, rather it should be observed whenever working with
physical parameters, even in CAPL programs. When working with signals containing floating point numbers,
ranges should always be used in comparisons.

2.5 Programming test cases in .NET test modules
To program a .NET test module, you need to specify a .NET file as the source file for the test module. The
recommended programming language is C#.

Although there can be several test modules running in parallel, these modules are not executed in separate
threads. Because of the CANoe internal concurrency architecture, you are not permitted to use synchronization
primitives (such as locks) or start additional threads in a .NET program. Use of the System.Thread class leads to
undefined behavior and may cause invalid results or program instability.

 Testing with CANoe

 17
Application Note AN-IND-1-002

The .NET API is an additional way to specify and implement test cases in CANoe. It extends CANoe for the use
with standard object oriented programming languages: e.g. C#, J# and VB.NET (C# recommended).

Features like extended capabilities to structure test programs, objected oriented concepts for reuse of test code,
and debugging brings advantages over CAPL.

Standard development environments like MS Visual Studio can be used for test development.

The CANoe installation comes with a .NET demo containing detailed code examples.

The following chapters describe the application of .NET test modules only on a high level. For detailed information
please refer to the separate document for the usage of .NET within CANoe.

2.5.1 Principle
The .NET Test API in CANoe can be used either for creating a pure .NET test module, or a so-called test library
with independent test cases that can be called from an XML test module. In the latter case the test sequence is
controlled via the XML module and there is no Main() method in the .NET code.

Not all features known from CAPL Test Feature Set are available in the .NET API but CAPL can be called from
.NET using a CAPL test library.

The difference in programming .NET test modules and a test library in .NET, is that a pure test module is
instantiated at the start of the test module and has a life-time until the Main() loop ends, A test library on the other
hand contains independent test cases that are instantiated at the test case start. Out of this reason variables are
not valid between different test cases in a test library.

2.5.2 Setting up purely .NET test modules
A .NET test module inherits from the class Vector.CANoe.TFS.Testmodule and consists primarily of the Main()
method and the implementation of test cases. Test cases are defined by the custom attribute [TestCase]. The
Main() method is the main program of the test module where the test cases are called in a specified sequence. It is
required to override this method.

Structuring of a .NET test module can be done by using TestGroups, TestCase and TestStep analog to the
structuring in a CAPL test module.

public class CentralLockingSystem : TestModule
{
 public override void Main()
 {
 TestGroupBegin("Test the windows", "Checks the window functions");
 SimpleWindowTest(true); // test case - open the window
 SimpleWindowTest(false); // test case - close the window
 TestGroupEnd();
 }

 [TestCase("Open/close the window")]
 public void SimpleWindowTest(bool open)
 {
 // some test code
 }
}

 Testing with CANoe

 18
Application Note AN-IND-1-002

2.5.3 Wait points
As in CAPL, it is possible to wait for various events in .NET test modules. Events could be e.g. timeout, bus signal
value, I/O signal value, or a user-defined event. In .NET, wait points for signal types are resolved as soon as they
are called if the condition is already met at that point in time.

Use the Execution class and it’s Wait method to wait for a certain event:

 Execution.Wait(50); // Wait for 50 ms

 Execution.Wait<LockState>(1); // Wait for the signal LockState to reach value 1

2.5.4 Type Library
The generation of the type libraries for the access to the database objects (signals, environment and system
variables, messages) is done completely automatically by CANoe. This ensures a type-safe access to bus and I/O
signals. CAN, LIN, and FlexRay signals are currently supported.

In case of name ambiguities of signals, the namespaces of the generated libraries (qualification of signals -->
DB::Node::Message::Signal) can be adjusted in the global options dialog. After changing this setting the type
libraries will be regenerated.

2.5.5 Event procedures in test modules
So-called event procedures are used to process events in .NET test modules. No event procedures may be
executed when the test module is inactive (see also 2.3.5). Custom attributes are used to define an event
procedure. The following types of custom attributes are available:

Handler for signal, environment variables and system variables:

[OnChange(typeof(LockState))] // Signal LockState

Handler to process a key event:

[OnKey(“k”)]

Handler to process a timer event cyclically:

[OnTimer(500)]

Handlers to process CAN message events

[OnCANFrame], [OnAnyCANFrame()]

For more information and code examples regarding the available attributes and their usage, please refer to the
online help.

The .NET API only supports on change handlers for signal types (in contrast to CAPL that supports both on
change and on update handlers). One reason is the performance aspect in .NET programs. And another reason is
that the signal based tests work state-based.

The message based tests on the other hand work event-based.

2.5.6 Observation of system conditions
The observation of system conditions n parallel to the test sequence is realized with checks. There are three types
of checks in .NET: Constraints, Conditions, and Observation. Constraints/conditions (as known form CAPL and
XML) influence the verdict of the test module but Observation does not.

• Signal based checks can be easily setup by using the ValueCheck class:
 ICheck observeLockState = new ValueCheck<LockState>(1)

• It is also possible to let a user-defined handler decide about the check result:

 Testing with CANoe

 19
Application Note AN-IND-1-002

 [Criterion] // Define custom criteria
 [OnChange(typeof(AntiTheftSystemActive))]
 [OnChange(typeof(LockState))]
 bool AntiTheftSystemCriterion()
 {
 …
 }

 ICheck observeAntiTheftSystem = new Check(AntiTheftSystemCriterion)

• As in CAPL there are also predefined chechs for e.g. cycle time observation.
• Additionally the user gets the possibility to define its own check in .NET.

The checks should only be defined, started and stopped in the “main test program”, not in event procedures.

2.6 XML test modules versus CAPL/.NET test modules
XML test modules do not replace CAPL or .NET test modules, rather they supplement them as another description
type that in many cases permits simpler definition of the tests. Stated quite simply, the important difference is that
in XML test sequences the user only assigns parameter values, while in CAPL or .NET the test sequences are
programmed.

CAPL/.NET and XML test modules have many similarities, but technically they differ in the aspects listed in the
table below.

 XML test module CAPL/.NET test module
Test case execution Each test case maximum once Each test case as often as desired
Execution order Statically fixed by XML file Set dynamically by call in the MainTest

function
Execution control Linear; test cases can be selected by the

user at the GUI
Programmed in the MainTest function

Test groups Statically defined by XML file
 Fixed, one-to-one assignment of test

cases to groups

Dynamically defined by code in MainTest
 Executed test cases are assigned to test

groups at run time
Test case definition Defined by test patterns Programmed in CAPL or .NET
Test report Contains information on all test cases

defined in the XML file
Contains information on the executed test
cases

The type of test module used to describe the test cases depends on the specific testing task and the existing test
environment (e.g. programming knowledge of colleagues, use of a test management tool). Strengths of the
different description types are listed below and are intended to make it easier to choose between them.
Nevertheless, it is possible to mix test cases written in different languages within one test module (especially to call
test modules from a CAPL or .NET library in XML test modules).

Strengths of XML test modules:

• Easy application: Execution control, verdict handling and implementation of test sequences (test and
control functions, especially test patterns) are an integral component and the user does not need to be
concerned with them.

• Generation: Test modules in XML format are easy to generate using other tools (e.g. test generators, test
management system).

• Parameterization of existing test sequences, the test sequences themselves are implemented in the test
patterns and primitives.

• No programming necessary: Test modules contain just a static description of the test cases and the
necessary parameters.

 Testing with CANoe

 20
Application Note AN-IND-1-002

Strengths of CAPL test modules:

• Maximum flexibility: The CAPL programming language offers maximum flexibility in the setup of test
modules, in programming flow control and in implementing test cases. In particular, it is possible to use this
method to program complex test cases that would otherwise be impossible in XML test modules.

• Complex flow control: The flow control programmed in MainTest can dynamically control the calls of test
cases, and it can make the calls dependent upon conditions that are checked during the test sequence.

Strengths of .NET test modules:

• Full-grown programming language: .NET test modules can be written in one of the programming
languages that are supported by the .NET platform. Especially programming of complex test cases
benefits from the elaborated constructs in such programming languages.

• Powerful programming environment: .NET test modules can be written using a powerful programming
environment like Microsoft’s Visual Studio. Many test programmers are used to these tools that let them
write test code very efficiently.

Somewhat superficially one might say that XML test modules are well-suited for tests in which many test cases are
performed with similar sequences but different parameters (especially if these test parameters are stored in a
database, Excel file or test management system). CAPL and .NET test modules, on the other hand, are especially
well-suited for programming complex test sequences that cannot be generated automatically.

In case of doubt, an initial attempt should be made to implement XML test modules with CAPL or .NET test case
libraries, since XML permit easier and quicker definition of test cases with their test functions. The additional
CAPL/.NET test cases provides the means to program the test cases with a more complex test execution flow.

2.7 Constraints and conditions

2.7.1 Principle
Constraints and conditions are checks that are performed in parallel to the specified test sequence. They are used
to detect deviations of the test environment or of the ECU under test from certain target values during the testing.
This may be a part of the actual test (the ECU is stimulated in the test sequence; the purpose of the test is to check
whether the ECU violates an invariant condition at some time during the test). Or they may be used to ensure that
the test environment operates properly during the test.

In principle the user could insert such checks in the test sequence, but then it would be necessary to program the
same checks at a large number of points in the sequence. Constraints and conditions, on the other hand, can be
implemented with very little effort. Furthermore, they are based on a concept that ensures that the conditions are
really checked for conformance at all times during the test flow.

 Testing with CANoe

 21
Application Note AN-IND-1-002

time

Constraints/Conditionstest main program

start of a Constr./Cond.

checksMainTest/test cases

test start

test end

test report

start of a Constr./Cond.

end of a Constr./Cond.

start of a Constr./Cond.

end of a Constr./Cond.

end of a Constr./Cond.

violation of a
checked
condition

verdict

test infrastructure

Figure 7: Constraints and conditions are executed in parallel to the actual test program.

The conditions to be checked are formulated and started in the test sequence. The test conditions are checked
continuously in parallel to the test flow until the constraint/condition is stopped in the test sequence. The
constraint/condition is automatically stopped when exiting the context (test case, test module, or test group in XML
test modules) in which the constraint/condition was started. In CAPL, constraints and conditions should only be
defined, started and stopped in the “main test program”, not in event procedures.

In a test module any desired number of constraints and conditions may be used, and they may also be
simultaneously active. However, there is always just one defined test sequence, the so-called “main test program”.

Conceptually, constraints are distinguished from conditions as follows:

• Constraints ensure that the test environment is in a state in which a valid test may be performed.
Constraints serve to check test assumptions but not to check the ECU under test. A constraint violation
indicates a problem in the test environment, not a defect in the ECU.

Example: During the test the ECU must maintain a stable supply voltage. If this voltage drops below a
specified Minimum at any point in time, then the test is invalid.

• Conditions check assumptions related to the ECU under test. Violation of a condition therefore indicates a
fault in the ECU.

Example: During test execution the ECU must maintain the specified cycle time for messages that are sent
periodically. The ECU does not satisfy its specification is this cycle time exceeds an upper or lower limit
(e.g. due to overloading of the processor).

In application, the primary difference between the two types of checking is that the result is represented differently
and must be interpreted accordingly. If the test fails due to a condition violation then the test objective has been
achieved, i.e. the ECU was tested, albeit with a failed result. A constraint violation, on the other hand, states that
the test could not be performed due to deficiencies in the test environment. In this case the test objective was not
achieved, and it is not possible to reach a verdict about the quality of the ECU under test.

Whenever a violation of a constraint or condition is detected, it is noted in the test report, and the verdict of the
currently active test cases (and thereby also of the entire test module) is set to “fail”. In a CAPL or .NET test
module this does not affect the test sequence that is executed in parallel. Therefore, it is possible for a test to be
conducted right to the end without any problems being detected in the test sequence yet still have a “fail” verdict
because a constraint or condition failed. In a XML test module, on the other hand, the test case being executed is
terminated, but not the test module.

 Testing with CANoe

 22
Application Note AN-IND-1-002

The time point of the constraint/condition violation is indicated in the test report as the time at which CANoe
recognized the violation. Precisely when this occurs will depend on the test condition that is used. To ensure that
the report does not become unwieldy only the first occurrence of a constraint/condition violation in a test case is
reported together with a supplemental statistical summary. This summary states how often the violation was
detected and how often violation checking was performed4. However, the exact definition of these two numbers will
depend on the test condition used and its implementation.

2.7.2 Use of predefined checks in CAPL and .NET
Checking conditions for constraints and conditions can be implemented in CAPL test modules by means of
predefined checks in the Test Service Library (see also 2.8.1) or user-defined events implemented in CAPL or
.NET. The checks provided in the Test Service Library are very easy to use and should be adequate in most
cases. User-defined checking of conditions in CAPL/.NET should only be necessary in exceptional cases such as
those described in section 2.7.4 below.

Four steps must be performed to use checks as constraints or conditions:

1. Create, parameterize and start the necessary check from the Test Service Library. The associated
functions begin with the prefix ChkStart_. The functions each return a unique ID for the newly created
check.

2. A constraint or a condition is generated by TestAddConstraint or TestAddCondition. The check
created in Step 1 represents the constraint/condition statement, and its ID is now passed as a parameter.
From this time point forward the constraint/condition monitoring that runs in parallel takes effect, i.e. “the
check becomes semantic”.

3. Constraint/condition monitoring is removed again by TestRemoveConstraint or
TestRemoveCondition.

The check is deleted by ChkControl_Destroy.

The two last steps are optional, since constraints/conditions are automatically removed at the end of the program
structure in which they were created. Checks are automatically destroyed at the end of the measurement. Example
in CAPL:

testcase TC ()
{
 dword check_id;
 check_id = ChkStart_MsgAbsCycleTimeViolation (StatusMsg, 90, 110);
 TestAddConstraint (check_id);
 …
 // The actual test sequence is located here
 …
 TestRemoveConstraint (check_id);
 ChkControl_Destroy (check_id);
}

The check is identified in the system via the ID returned when the check is created. In the Test Feature Set this ID
is also referred to as the Auxiliary ID, since it is also used to identify the events sent by checks and the
components they utilize. Therefore, from a technical perspective TestAddConstraint (check_id) signifies
that from this point forward a constraint violation will be reported if an (Auxiliary) event of the ID check_id is
received. As soon as the check detects a violation of the check assumption this event is sent by the check running
in parallel to the actual test sequence. The check does not become a constraint until the event is linked via the ID.

Monitoring is in force between TestAddConstraint and TestRemoveConstraint. These two commands must
be executed in the same context, i.e. in the same test case or in MainTest. The same check may be used more

4 Conceptually the check runs in background. In actuality the check only occurs if events arrive that are relevant to the condition

to be checked.

 Testing with CANoe

 23
Application Note AN-IND-1-002

than once as a constraint/condition; there might be several monitored sections in a test case, for example. In
principle, a check does not need to be created by TestAddConstraint just before its first usage, but this is
recommended in the spirit of localizing the code and to make it more readable.

2.7.3 Constraints and conditions in XML
Constraints and conditions can be used in XML test modules, too. Checks from the Test Service Library are
available as checks. Constraints and conditions are defined in a separate XML element at the beginning of a test
case, test group or test module, and they then apply to that section of the XML test module. Example:

<testcase ident=”TC2” title=”Wiping Level 2”>
 <conditions>
 <cycletime_abs min="0" max="1100">
 <canmsg id="WipingStatus"/>
 </cycletime_abs>
 </conditions>
 …
</testcase>

Similarly, it is not necessary to create the check or constraint/condition separately, nor is it necessary to explicitly
delete checks, constraints or conditions. Nevertheless, the basic functionality is the same as that of constraints and
conditions in the CAPL test module.

Monitoring covers the entire execution of the test sequence defined by test patterns within this test case. If
constraints and conditions are defined in test groups or in test modules, then monitoring covers the execution of all
test cases and test groups they contain, including all of the sections contained in these test cases. Failure of a
constraint or condition leads to the “fail” verdict of the test case just executed.

2.7.4 User-defined test conditions
User-defined events can be used to implement any desired constraints and conditions in CAPL. Essentially the
procedure is the same as in implementation of user-defined wait conditions (compare 2.3.6). The actual check is
implemented in the event procedures of the test module, which initiates a user-defined event (“text event”) if a
violation of a constraint or condition is detected. Example:

on message Status
{
 if (this.Temperature > 100)
 TestSupplyTextEvent (“Overheated”);
}

testcase TC
{
 TestAddConstraint (“Overheated”);
 …
 // The actual test sequence is located here
 …
 TestRemoveConstraint (“Overheated”);
}

In this case the user-defined event represented by the character string is input and serves as a constraint or
condition. Entry of a user-defined event as a constraint or condition means “make sure that this event does not
occur”.

 Testing with CANoe

 24
Application Note AN-IND-1-002

2.7.5 Influencing the test flow
Constraints and conditions do not affect the test flow in CAPL/.NET test modules. In XML test modules they lead to
termination of the test case being processed. Generally the results of constraint/condition monitoring are not
evaluated by the test program. If a constraint or condition fails, this impacts the verdict directly and is noted in the
test report. No further steps are required in the program.

If the further course of a test sequence actually depends on the results of constraint/condition monitoring, then the
status of a constraint or condition running in CAPL/.NET may be queried explicitly (TestCheckConstraint,
TestCheckCondition). However, because of the dependency of the verdict on the current state it is possible to
just query the verdict by TestGetVerdictLastTestCase and TestGetVerdictModule. One potential
application would be to only start a very lengthy test if the verdict indicates a “pass”. However, such queries are
only recommended in exceptional cases, and generally they should not be necessary.

2.8 Test Service Library
The Test Service Library is an integral part of the CANoe Test Feature Set. It contains prepared testing and value
generating functions intended to simplify test setup:

• Checks: Checking functions that operate in parallel to the defined test sequence. Checks are used
primarily in constraints and conditions (compare 2.5).

• Stimulus generators: These commands are used to generate a specific sequence of values for a signal or
environment variable in order to stimulate an ECU.

Checks and stimulus generators must be generated and parameterized before their usage. With a generator, for
example, the sink for a series of generated values and the cycle time of the generated values may be specified.
Suitable control functions may be used to activate or deactivate, reset or clear a check or a generator. These
control functions immediately roll back to the calling function, i.e. they do not wait. The check or generation is
executed in background, in parallel to the continued test processing.

Once a check or generator has been set up, it may be used multiple times during test execution, i.e. it may be
started and stopped multiple times. However, once a check or stimulus generator has been started, it may not be
started a second time without having been stopped first. In general it is advisable to insert the call of
ChkControl_Reset just before its reuse as a constraint or condition. It is possible to create multiple similar
checks and use them simultaneously. A check or generator is identified by a unique number (ID) that is returned
when a check or generator is created.

2.8.1 Checks
Checks can be implemented in CAPL simulation nodes and in test modules. They are used differently in these two
cases. In CAPL simulation nodes, a violation of a test condition detected by the check is reported via a callback
function. In CAPL and XML test modules the checks are implemented as constraints or conditions (see 2.7.2).
Feedback via a callback function can also be used in CAPL test modules, but this is only advisable in very few
isolated cases.

The Test Service Library has some functions for controlling checks (deleting, reinitializing, starting, stopping,
finding the status) and for querying results information (e.g. statistics on detected fault events). These functions
may be used in test modules, but they are not absolutely necessary. Generally, only the function for creating,
parameterizing and simultaneously starting the check is used in test modules. The check is then used by entering
the returned ID as a constraint or condition.

dword id;
id = ChkStart_MsgAbsCycleTimeViolation (MsgSpeed, 80, 120);
TestAddConstraint (id);
…
TestRemoveConstraint (id);
ChkControl_Destroy (id);

 Testing with CANoe

 25
Application Note AN-IND-1-002

Checks report on their execution and detected faults in the test report. No additional programming work is needed
here.

2.8.2 Stimulus Generators
Stimulus generators generate series of values that are applied to signals or environment variables. The cycle time
is the time until the next value of the generated value series is copied to the environment variable or signal. That is,
the cycle time sets the sampling rate for the generated value series and thereby the rate of change of the sink.

The generators repeat the specified value series periodically, so that a value series of any desired length can be
created. The time required to execute one value series until its repetition is called the period. In most cases it is
obtained from the specified value series and therefore is not usually specified explicitly when creating the stimulus
generator (Example: A square-wave signal with 10ms High and 30ms Low level has a period of 40ms).

values in the
generator

actual values at
signals or

environment
variables

t

t

se
t s

ig
na

l o
r

en
vi

ro
nm

en
t v

ar
ia

bl
e

cycle time period

Figure 8: Stimulus generators for signals and environment variables.

The change of a signal does not necessarily cause an associated message to be sent to inform the entire system
of the new signal value. An Interaction Layer (e.g. Vector IL that is supplied with CANoe) or a suitable CAPL
program is responsible for sending out messages. The stimulus generator only sets the appropriate signal value.
With messages that are sent periodically, the cycle time of the stimulus generator also does not need to match the
cycle time of the message. The first cycle time determines when the signal is set according to the value series, and
the latter cycle time determines when the message is sent out.

2.9 Test setup
In principle, test modules can be used both in the simulation setup and in the test setup. However, the test setup,
as the name implies, is the preferred location for tests. In the test setup the test modules are not assigned to
specific buses, because it may be assumed that tests relate to the total system. To make it easy to reuse prepared
tests even after the simulation model is changed (e.g. a new version of the simulation model is introduced), the test
setup may be saved and reloaded separately.

Similarly, the test setup offers a few advanced options such as consecutive execution of multiple test modules and
merging of test reports from different test modules. These functions do indeed simplify working with multiple test

 Testing with CANoe

 26
Application Note AN-IND-1-002

modules, but they do not represent a modularization concept for testing (distribution of tests among individual test
modules). Test cases that belong together and are always executed together should reside within a single test
module.

3.0 Test strategies
Tests can be developed and implemented according to different strategies. This chapter describes a few such test
strategies and their implementation in CANoe. In practice, however, mixed forms are encountered frequently, and
some test strategies may be implemented in parallel.

3.1 Protocol tests
Tests that primarily involve direct communication between tester and ECU to stimulate and evaluate the ECU
under test are called protocol tests. This type of testing does not utilize any abstraction layers in the tester, which
for example map signals to communication by messages, rather the tester communicates directly with the ECU
under test. It thereby replaces even the communication protocol; hence its name.

3.1.1 Test concept
Protocol tests are described by a test sequence that is basically structured as follows: The tester stimulates the
ECU under test, e.g. by sending messages or activating I/O lines, then it waits for the reaction of the ECU and
finally checks whether the observed reaction matches the expected one. Depending on the results of the last test
the tester might resume the stimulation, wait for the reaction, check it, and so on. These sequences may of course
be more complex too. The “ping pong game” of action and reaction with subsequent checking of the reaction by
the tester is a typical characteristic of this test concept.

Tester SUT
communication, I/O

test course

checking

checking

checking

checking

Figure 9: Schematic diagram of the Protocol Test.

The test sequence and the test conditions are very tightly interwoven. The test sequences simulate the specified
behavior of the ECU precisely and check whether the ECU under test actually behaves according to specification.
Even if the test conditions can only be formulated somewhat vaguely, e.g. if a range needs to be specified for an
expected value, correct behavior of the ECU under test must be known somewhat precisely.

Example: An ECU for the windshield wiper system is to be tested. This involves connecting the ECU’s CAN bus to
the tester as well as the various I/O lines, e.g. to drive the windshield wiper motor or the end switches of the
windshield wipers. A test case might be formulated as follows: The tester sends a CAN message to the controller
telling it that the windshield wiper has been turned on. Then the tester waits until the ECU activates the voltage for
the windshield wiper motor. This must occur within a specific time span, or else the test case fails.

 Testing with CANoe

 27
Application Note AN-IND-1-002

3.1.2 Implementation in CANoe
Protocol tests can be implemented very linearly in CAPL test modules using existing CAPL functions and the
supplemental wait functions of the Test Feature Set. Typically the test sequence follows a simple scheme that
repeats as often as needed:

• Output of a message to the ECU under test (Stimulus).
• Waiting for the ECU’s response.
• Evaluation of the response if necessary.

In the same way as for messages, environment variables can also be set and read, in order to influence or
measure the ECU’s I/O lines, for example.

Excerpt from a test case as example of a protocol test implementation in CAPL:

message SeatSensorLeftRequest msgLeftRequest;
message SeatSensorRightRequest msgRightRequest;
…
// TESTER ---->> SUT
output(msgLeftRequest);

// TESTER <<---- SUT
if (1 != TestWaitForMessage(SeatSensorLeftResponse, 1000))
{
 TestStepFail (“”, “Response message left not received within 1000ms.”);
 return; // cancel test case
}

// TESTER ---->> SUT
output(msgRightRequest);

// TESTER <<---- SUT
if (1 != TestWaitForMessage(SeatSensorRightResponse, 1000))
{
 TestStepFail (“”, “Response message right not received within 1000ms.”);
 return; // cancel test case
}
…

In this example the test case is terminated when an error occurs. However, this need not be the case. It is also
conceivable that the test case might make further communication dependent on the output of a wait operation.

In principle, protocol tests can also be implemented by XML test modules. This involves the use of test patterns
that work on the message level (e.g. requestresponse). Such possibilities are limited, however. In particular, the
test sequence cannot be made dependent upon previous results, since classic programming capabilities such as
conditions and loops are not available in the XML test modules.

3.2 Application Tests
Application tests is the name for tests in which the test sequence is primarily formulated on the level of an ECU
application. In the tester an abstraction layer adapted to the system of the ECU under test is used for
communication; this layer is often called the Interaction Layer. The tester uses it to communicate like an ECU
application with the ECU under test via a system-conformant communication layer.

3.2.1 Test concept
Just as with the protocol test, in the application test the test sequence is used to stimulate the ECU, receive
reactions and evaluate them. However, the actual communication is abstracted via an Interaction Layer. In the

 Testing with CANoe

 28
Application Note AN-IND-1-002

CAN area this largely consists of reading incoming signals or setting outgoing signals. How and when these should
be sent out and received via the CAN bus is determined and implemented by the Interaction Layer.

The use of an Interaction Layer simplifies the test sequences significantly, since otherwise all properties of the
communication protocols would need to be emulated precisely in the test sequence. However it must be assumed
that the Interaction Layer will operate error-free in the tester. Unfortunately, in many cases the abstraction layer
also prevents errors in the ECU’s Interaction Layer from being detected. Therefore, in this test strategy it is the
application of the ECU that is being tested, not the components of the communication layers.

At many points the test sequences differ from those of protocol tests in one important detail: The tester does not
wait for the arrival of the reaction, rather it waits a defined time and then checks the states in the Interaction Layer.
The tester might set certain signals in the Interaction Layer, wait and then read signal values from the Interaction
Layer for checking purposes. The wait time must be of such a length that it always allows sufficient time for the
Interaction Layer to transmit the set signals to the ECU, the ECU can react to them, and the changed signals can
be received in the tester. The time span used is therefore a maximum value that is not needed in every case.
Nevertheless, the test sequence generally waits for the defined time, because the actual processes are hidden by
the Interaction Layer.

Tester

test course

interaction layer

set/get
of

signals
etc.

communication, I/O

SUT

checking

checking

checking

Figure 10: An abstraction of the actual communication is made in the Application Test.

Example: An ECU of the windshield wiper system is to be tested. A test case might consist of having the tester set
the “Windshield wiper adjustment stalk” signal to “automatic” and the “rain sensor” signal to “strong rain”. The
tester waits for a specific length of time and then reads the signal “Windshield wiper activity”. If this signal has the
value “Windshield wiper active”, then the test case has been completed successfully. If the signal has the value
“Windshield wiper inactive”, then the test case failed.

3.2.2 Implementation in CANoe
The Interaction Layer, the abstraction layer needed for the application tests, is also used for simulation of ECUs in
CANoe. As soon as an Interaction Layer is integrated in CANoe’s rest-of-bus simulation5, the relevant signals may
be changed in test modules.

XML test modules provide a number of test patterns for signal-oriented tests, and they are especially useful when
larger quantities of signals and signal values must be covered in the test. In this case, the XML file could be
generated from an Excel table or a database in which the relevant signal names and signal values are saved.

5 Usually the Interaction Layer exists as a DLL and is configured by entries in the CANdb database. However, it may also be

implemented in CAPL.

 Testing with CANoe

 29
Application Note AN-IND-1-002

Example of a test case of an application test in XML:

<testcase ident=”1” title=”Test Application Door Lock”>
 <initialize title=”Ensure system is running” wait=”200”>
 <cansignal name=””></cansignal>
 </initialize>
 <statechange title=”Lock door, check door locked response” wait=”1200”>
 <in>
 <cansignal name=”Lock”>1</cansignal>
 </in>
 <expected>
 <cansignal name=”DoorLocked”><eq>1</eq></cansignal>
 </expected>
 </statechange>
</testcase>

The test only handles signals (writing and reading); it does not access bus communication directly. The timing of
the sequence is not determined by bus communication either; rather it is based on fixed wait times. Wait times are
set as the maximum allowable time within which the system must react to signal changes.

Access to signals is also provided in CAPL. Therefore application tests can also be formulated in CAPL, which
presents itself as a solution especially for tests with complex sequences.

3.3 Invariants test
Tests may consist of operating the ECU under various limit conditions and continuously checking it for
conformance to certain specified behaviors. These specified behaviors are conditions that must be maintained
under all circumstances, and they are frequently referred to as “invariants”. Therefore we also call this type of
testing the invariants test.

3.3.1 Test concept
For the devices or systems under test one can formulate conditions that they must fulfill in certain states. These
conditions describe the desired properties of the ECU under test. A simple condition for an ECU on the CAN bus
might be: Periodically sent CAN messages must be placed on the CAN bus at the specified cycle time in every
operating state. However, such conditions could be much more complex, and they might exhibit dependencies to
specific operating states.

Tester SUT
communication, I/O

stimulationinvariant checking

co
nt

in
uo

us
 c

he
ck

in
g

state:
signals,

I/O
values,

etc.

Figure 11: Principle flow in the Invariants test.

 Testing with CANoe

 30
Application Note AN-IND-1-002

The actual test now consists of continuously monitoring for these conditions while the device under test is
subjected to various situations (the latter might involve a “vehicle driving cycle”). What is important is that the ECU
under test satisfies the required conditions in all operating situations. The test is passed if the conditions were not
violated at any time.

Example: An ECU of the windshield wiper system is to be tested. Behaviors that might be monitored as invariant
conditions include: Cycle times of periodic CAN messages, the value ranges of various ECU signals, and the
reliability of the windshield wiper position (determined by test instrumentation at the ECU outputs). The test
program then subjects the ECU to various situations. The test program executes a type of “vehicle driving cycle”
with the ECU. For example, various user inputs at the control stalk and various “rain sequences” (information from
rain sensor) are applied to the ECU. The invariants are tested continuously in parallel. The ECU passes the test if
no condition is violated during the entire test sequence.

Stimulation and test conditions are independent of one another in this test strategy, and they can therefore be
developed separately without any problems. In developing the stimulation what is important is to run through all
classes of operating situations and all special cases if at all possible (code coverage, feature coverage, etc.). It is
relatively easy to develop the stimulation, and random elements may be included (Basic approach: “Playing with
the user controls), since the reaction of the ECU under test does not need to be evaluated.

The invariant test conditions can usually be derived from the ECU specification, since they essentially describe the
ECU’s properties. The conditions usually check whether certain properties and values lie within their defined
allowable limits. These conditions are genuine invariants, because they apply equally to all operating states.
However, it is also possible to check specific properties in specific operating states, whereby identification of the
desired operating state must be made part of the condition.

3.3.2 Implementation in CANoe
Conditions are available for implementing invariants tests in CANoe. These may be used in both CAPL and XML
test modules (compare 2.5). In both cases the invariant is formulated as a condition that is active while the test
case is being run. The actual test sequence consists primarily of stimulation of the ECU under test. Evaluation of
the ECU’s responses finds very limited use here. The ECU is operated, not tested.

The ECU can also be stimulated via recorded communication, as shown in the following example with the replay
test pattern:

<testcase ident=”1” title=”Check cycle time of status message”>
 <conditions>
 <cycletime_abs min=”80” max=”120”>
 <canmsg id=”Status”>
 </cycletime>
 </conditions>
 <replay title=”Replay signal curve” file=”curve.asc” />
</testcase>

The sequence saved in a CANoe log file can be stored by logging or recorded as a macro beforehand with the help
of CANoe. Typically the ECU is first operated in a rest-of-bus simulation, and some of the functional sequences are
played back there. The resulting communication, which may include changes at I/O lines, is recorded and used as
a stimulus in the test case.

As an alternative, a log file may be fully generated by a simple tool or be created manually. The stimulus functions
of the Test Service Library may also be used to drive the system (compare 2.8.2).

The desired control input sequence can also be programmed in CAPL for a CAPL test module or formulated as a
sequence of test patterns for a XML test module. This is how a test can be created that contains application and
invariants tests.

 Testing with CANoe

 31
Application Note AN-IND-1-002

4.0 Interface to a Test Management System
Besides using CANoe as a standalone test tool, it is often necessary to interface a higher-order test system.
CANoe assumes the role of the test execution tool in such a network. Embedding options are the main topic of this
chapter. In individual cases details will depend on the specific problem and the tools and test approaches used.

4.1 Fundamentals of test management
The Test Management System concept is not rigidly defined. It is understood to cover systems that save and
manage information for testing.

For example, individual test cases could be described in a test management system, and information could be
saved regarding which test cases should be executed for which ECUs. Other organizational units are also feasible,
e.g. configuration of different test types (short test, regression test, etc.). Moreover, the test management system
could also manage the different versions of the test case descriptions.

After tests have been executed, a test management system could save the results. The system must then be able
to answer queries of the type: “Has test case X already been executed for Version Z of ECU Y, and if so what were
the results?” Statistical evaluations of the results data would make sense too, e.g. to reach a conclusion about the
test status of a specific version of an ECU.

These are just a few examples of the possible functional scope of a test management system; others are
conceivable. In particular, a test management system could also be integrated in a more advanced process tool,
which might, for example, also produce and manage the interrelationships between a specification and the test
cases.

4.2 Principle of the interface
In interplay with a test management system, however it is set up, CANoe plays the role of the test execution
machine. Information may flow in two directions:

• The test management system provides the test cases/test modules for test execution in CANoe.
• The test results are read into the test management system.

Figure 12: Interfacing a test management system to CANoe.

 Testing with CANoe

 32
Application Note AN-IND-1-002

Furthermore, the test management system could control test execution itself by utilizing CANoe’s remote control
capabilities via the COM server.

Best suited as an interface to the test management system are the XML-based test modules and test reports,
because the XML format is easy to generate in other applications and can be read into them and interpreted.

For this reason the XML test module has intentionally been kept simple. It is expected that the test management
system will manage the volume of test cases and their assignment to specific ECU versions and variants. Once a
test has been performed, the test management system creates a precisely-adapted test data record in the form of
a XML test module.

In this scenario it is the task of the XML test modules to define the test cases to be executed and prepare the data
needed for them. The actual test sequences are programmed in the test patterns. Therefore the XML file should
primarily be understood as a parameter description and not as a test program. Accordingly, the distribution of tasks
between the test management system and CANoe should be this: The test management system determines which
test cases should be executed and with which data, while CANoe handles their actual execution.

In many cases, evaluation of the XML test report and thereby the reading back of test results is performed with the
on-board tools of the test management systems. Programming capability in one of the script languages in common
use such as JavaScript, Visual Basic or Perl is generally adequate, since these languages usually offer support for
XML (XML Parser). XML test reports follow a rather simple structure, so it is possible to read and interpret them
using simple XML tools.

5.0 Contacts

Germany
and all countries not named below:
Vector Informatik GmbH
Ingersheimer Str. 24
70499 Stuttgart
GERMANY
Phone: +49 711-80670-0
Fax: +49 711-80670-111
E-mail: info@de.vector.com

France, Belgium, Luxemburg:

Vector France SAS
168 Boulevard Camélinat
92240 Malakoff
FRANCE
Phone: +33 1 42 31 40 00
Fax: +33 1 42 31 40 09
E-mail: information@fr.vector.com

Sweden, Denmark, Norway,
Finland, Iceland:
VecScan AB
Theres Svenssons Gata 9
41755 Göteborg
SWEDEN
Phone: +46 31 764 76 00
Fax: +46 31 764 76 19
E-mail: info@se.vector.com

United Kingdom, Ireland:
Vector GB Ltd.
Rhodium
Central Boulevard
Blythe Valley Park
Solihull, Birmingham
West Midlands B90 8AS
UNITED KINGDOM
Phone: +44 121 50681-50
E-mail: info@uk.vector.com

China:
Vector Informatik GmbH
Shanghai Representative Office
Suite 605, Tower C,
Everbright Convention Center
No. 70 Caobao Road
Xuhui District
Shanghai 200235
P.R. CHINA
Phone: +86 21 - 6432 5353 ext. 0
Fax: +86 21 - 6432 5308
E-mail: info@vector-china.com

India:
Vector Informatik India Private Ltd.
4/1/1/1 Sutar Icon
Sus Road
Pashan
Pune 411021
INDIA
Phone: +91 9673 336575
E-mail: info@vector-india.com

USA, Canada, Mexico:
Vector CANtech, Inc.
39500 Orchard Hill Pl., Ste 550
Novi, MI 48375
USA
Phone: +1 248 449 9290
Fax: +1 248 449 9704
E-mail: info@us.vector.com

Japan:
Vector Japan Co. Ltd.
Seafort Square Center Bld. 18F
2-3-12, Higashi-shinagawa,
Shinagawa-ku
Tokyo 140-0002
JAPAN
Phone: +81 3 5769 7800
Fax: +81 3 5769 6975
E-mail: info@jp.vector.com

Korea:
Vector Korea IT Inc.
#1406, Mario Tower,
222-12 Guro-dong, Guro-gu
Seoul, 152-848
REPUBLIC OF KOREA
Phone: +82 2 807 0600
Fax: +82 2 807 0601
E-mail: info@kr.vector.com

	Testing with CANoe

	1.0 Overview............................
	2.0 Testing with CANoe..................
	2.1 CANoe Test Concept..................
	2.1.1 Architecture......................
	2.1.2 Test Module, Test Group, Test Case
	2.1.3 Test Results – Verdicts...........
	2.2 Reporting of Test Results...........
	2.2.1 Overview..........................
	2.2.2 Manually and automatically generat
	2.2.3 Use of identifiers................
	2.2.4 Test steps........................
	2.2.5 Documentation of CAPL programs by
	2.3 Formulating test cases in CAPL......
	2.3.1 Principle.........................
	2.3.2 Setting up a CAPL test module.....
	2.3.3 Wait commands.....................
	2.3.4 Wait commands with complex conditi
	2.3.5 Event procedures in test modules..
	2.3.6 User-defined events...............
	2.3.7 Differences between CAPL for simul
	2.4 Defining test cases in XML test modu
	2.4.1 Principle.........................
	2.4.2 Setting up XML test modules.......
	2.4.3 Working with test functions.......
	2.5 Programming test cases in .NET test
	2.5.1 Principle.........................
	2.5.2 Setting up purely .NET test module
	2.5.3 Wait points.......................
	2.5.4 Type Library......................
	2.5.5 Event procedures in test modules..
	2.5.6 Observation of system conditions..
	2.6 XML test modules versus CAPL/.NET te
	2.7 Constraints and conditions..........
	2.7.1 Principle.........................
	2.7.2 Use of predefined checks in CAPL a
	2.7.3 Constraints and conditions in XML.
	2.7.4 User-defined test conditions......
	2.7.5 Influencing the test flow.........
	2.8 Test Service Library................
	2.8.1 Checks............................
	2.8.2 Stimulus Generators...............
	2.9 Test setup..........................
	3.0 Test strategies.....................
	3.1 Protocol tests......................
	3.1.1 Test concept......................
	3.1.2 Implementation in CANoe...........
	3.2 Application Tests...................
	3.2.1 Test concept......................
	3.2.2 Implementation in CANoe...........
	3.3 Invariants test.....................
	3.3.1 Test concept......................
	3.3.2 Implementation in CANoe...........
	4.0 Interface to a Test Management Syste
	4.1 Fundamentals of test management.....
	4.2 Principle of the interface..........
	5.0 Contacts............................

